

Figure 1 - Steelflex T10 & T20 coupling range

1. General Information

- 1.1. Falk Steelflex Couplings are designed to provide a mechanical connection between the rotating shafts of mechanical equipment, using a grid spring to accommodate inherent misalignment while transmitting the power and torque between the connected shaft.
- 1.2. These instructions are intended to help you to install and maintain your Falk Steelflex coupling. Please read these instructions prior to installing the coupling, and prior to maintenance of the coupling and connected equipment. Keep these instructions near the coupling installation and available for review by maintenance personnel. For special engineered couplings, Rexnord may provide an engineering drawing containing installation instructions that take precedence over this document.
- 1.3. Rexnord Industries, LLC owns the copyright of this material. These Installation and Maintenance instructions may not be reproduced in whole or in part for competitive purposes.
- 1.4. Symbol descriptions:

Danger of injury to persons.

Damages on the machine possible.

Pointing to important items.

Hints concerning explosion protection.

2. Safety and Advice Hints

- 2.1. Safety should be a primary concern in all aspects of coupling installation, operation, and maintenance.
- 2.2. Do not make contact with the coupling when it is rotating and/or in operation.
- 2.3. Because of the possible danger to person(s) or property from accidents which may result from improper use or installation of these products, it is extremely important to follow the proper selection, installation, maintenance and operational procedures.
- 2.4. All personnel involved in the installation, service, operation, maintenance, and repair of this coupling and the connected equipment must read, understand, and comply with these Installation and Maintenance instructions.

For this coupling to meet the ATEX requirements, you must precisely follow these installation and maintenance instructions, and the supplement form 0005-08-49-01. This supplement outlines the ATEX requirements. If the operator does not follow these instructions, the coupling will immediately be considered non-conforming to ATEX.

- 2.5. All rotating power transmission products are potentially dangerous and can cause serious injury. They must be properly guarded in compliance with OSHA, ANSI, ATEX, European machine safety standards and other local standards. It is the responsibility of the user to provide proper guarding.
- 2.6. For ATEX requirements the guard must have a minimum of 12.7 mm (1/2 inch) radial clearance to the coupling outside diameter and allow for proper ventilation.
- 2.7. Make sure to disengage the electrical power and any other sources of potential energy before you perform work on the coupling.
- 2.8. Proper lockout-tag out procedures must be followed to safeguard against unintentional starting of the equipment.
- 2.9. All work on the coupling must be performed when the coupling is at rest with no load.
- 2.10. Do not start or jog the motor, engine, or drive system without securing the coupling components. If the equipment is started with only a hub attached, the hub must be properly mounted and ready for operation, with the key and set screw (if included) fastened. When the full coupling assembly is started, all fasteners and hardware must be completely and properly secured. Do not run the coupling with loose fasteners.
- 2.11. The coupling may only be used in accordance with the technical data provided in the Falk Steelflex coupling catalog. Customer modifications and alterations to the coupling are not permissible.
- 2.12. All spare parts for service or replacement must originate from or be approved by Rexnord Industries, LLC.

Supersedes manuals 428-110, 112, 210 - 04/2005

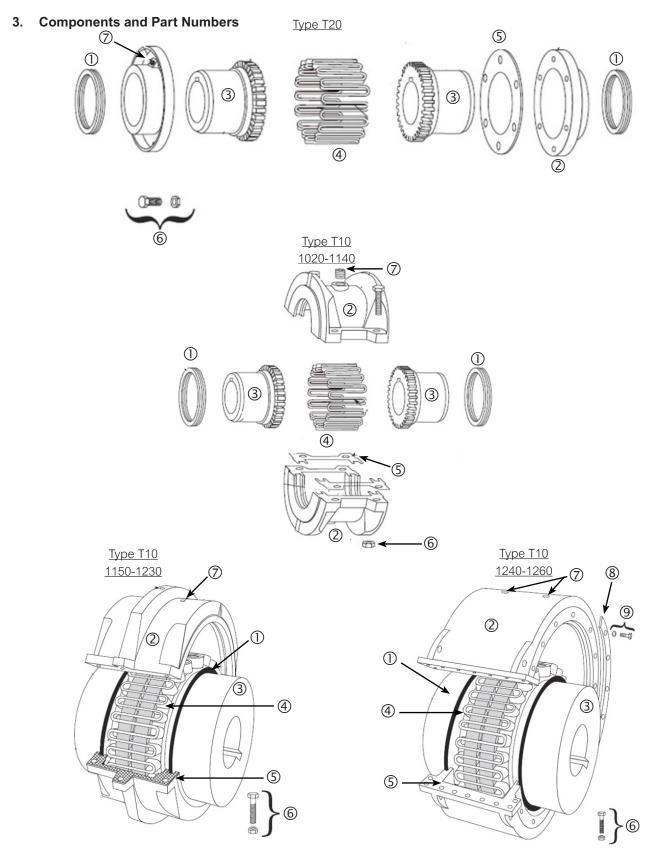
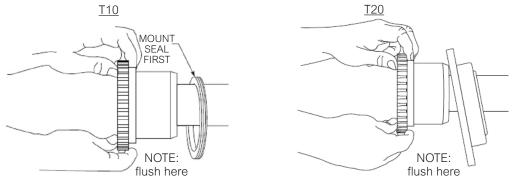


Figure 2 - Falk Steelflex Coupling Components


					Tabl	e 1 – F	alk Steef	lex Coup	pling (Compo	nent	part num	bers								
Description	Style	Part	1020	OT 103	30T 1	040T	1050T	106	30T	1070	TC	1080T	109	0T ·	1100T	1110)T	1120	т	1130T	1140T
Seal Kit	T10	1 & 5	07766	650 0776	6651 07	76652	077665	3 0776	6654	07766	655	0776708	0776	709 07	707189	07071	190	07071	91 0	707192	070719
Seal Kit	T20	1 & 5	07067	752 0706	6753 07	06754	070675	5 0706	3756	0706	757	0706758	0706	759 0	06760	07067	761	07067	62 0°	706763	070676
Cover Assembly	T10	1, 2, 5, 6, 7	07758	804 077	805 07	75806	077581	0 0775	5811	07758	812	0776214	0776	215 0	76216	07762	217	07762	18 0	776219	077622
Cover Assembly	T20	1, 2, 5, 6, 7	07067	739 0706	3740 07	06741	070674	2 0706	3743	0706	744	0706745	0706	746 0	06747	07067	748	07067	49 0°	706750	070675
Hub	T10 & T20	3	02466	652 0246	6653 02	46654	024665	5 0246	656	02466	657	0246658	0246	659 02	246660	02466	661	02466	62 0	246663	024666
Grid	T10 & T20	4	07628	810 076	2811 07	62812	076281	3 0762	2814	07582	250	0758251	0758	252 0	58253	07582	254	07582	55 0°	758256	075825
Fastener Set	T10	6	07757	798 077	5798 07	75798	077580	0 0775	5800	07758	800	0776194	0776	194 0	76196	07761	196	07762	21 0	776221	077622
Fastener Set	T20	6	07070	045 070	7046 07	07046	070704	7 0707	7047	07070	047	0707048	0707	048 0	707049	07070)49	07070	50 0°	707051	070705
								•								٠.	·				
Description	Style	Part		1150T	1160T	11	70T	1180T	111	90T	120	00T 1:	210T	1220	T 12	230T	124	40T	1250	T 1	260T
Seal Kit	T10	1 & 5		0725614	072561	5 072	25616 0	725617	072	5618	0725	619 07	25732	07257	33 07	25734					
Seal Kit	T20	1 & 5		0725620	072562	21 072	25622														
Cover Assembly	T10	1, 2, 5, 6, 7	, 8, 9	0767950	076795	1 076	7952 0	767953	076	7954	0767	955 04	27516	04275	17 04:	27518	0422	2233	04222	34 04	22235
Cover Assembly	T20	1, 2, 5, 6	, 7	0706752	070675	3 070	6754														
Hub	T10 & T20	3		0333090	033309	033 1	3092 0	333093	033	3094	0333	03	34246	03342	47 03	34248	0334	4249	03342	50 03	34251
Grid	T10 & T20	4	l	0758258	075825	9 075	8260 0	758261	075	8262	0758	263 07	58264	07582	65 07	58266	0758	3267	07582	68 07	58269
Fastener Set	T10	6		0744116	074411	6 074	4117 0	744117	074	4118	0744	119 07	44120	07441	21 074	44121					
Fastener Set	T20	6	İ	0744122	074412	22 074	4123														

4. Mount Seals (Cover T20) & Hubs

Be sure to disengage the electrical power and any other sources of potential energy before you perform work on the hub and coupling assembly.

- 4.1. Examine the coupling assembly to insure there is no visible damage.
- 4.2. Clean the hub bores and shafts using lint free cloth. Remove any nicks or burrs.
- 4.3. When assembled, the key(s) should have a close side-to-side fit in the keyway in the hub and shaft, with a slight clearance over the top of the key.
- 4.4. Place the seal rings and ½ cover for T20 on shafts before mounting hubs.

 \bigwedge

CAUTION: When heating hubs is required, an oven is preferred and an open flame is not recommended. If flame heating is considered mandatory, it is important to provide uniform heating to avoid distortion and excessive temperature. A thermal stick applied to the hub surface will help determine the hub temperature.

DANGER!

Touching hot hubs causes burns. Wear safety gloves to avoid contact with hot surfaces.

5. Straight Bore with Clearance/Slip Fit

- 5.1. Install the key(s) in the shaft.
- 5.2. Check to be sure that the set screw(s) in the hub does not protrude into the keyway or the bore. Remove or back out the set screw to provide clearance during assembly.
- 5.3. Slide the hub up the shaft to the desired axial position.

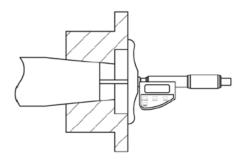

5.4. Assemble and tighten the set screw(s) using a calibrated torque wrench to the values shown in Table 2.

Table 2 - Set Screw Tightening Torque												
Screw Size		M6	M8	M10	M12	M16	1/4"	3/8"				
Hex Head Key Size	Э	М3	M4 M5		M6	M8	1/8"	3/16"				
Tightening torque	Nm	6	12	25	50	100	8	25				
	lb-in	55	110	220	440	880	70	220				

CAUTION: Never use two set screws with one on top of the other in the same tapped hole.

Straight Bore with Interference Fit

- Accurately measure the bore and shaft diameters to assure proper fit.
- Install the key(s) in the shaft.
- 6.3. Heat the hub in an oven until the bore is sufficiently larger than the shaft.
- 6.4. 275°F (135°C) is usually sufficient for carbon steel hubs. Do not exceed 400°F (205°C).
- 6.5. With the hub expanded, install it quickly on the shaft to the desired axial position. A pre-set axial stop device can be helpful.

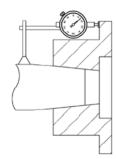


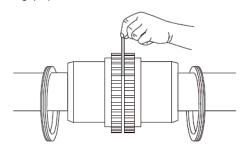
Figure 3 - Shaft end to hub face measurement example.

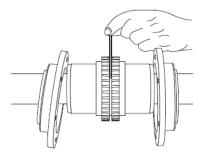
Figure 4 - Dial indicator placement for axial draw measurement example.

7. Taper Bore

- 7.1. Check for acceptable contact pattern between the hub and the shaft.
- Put the hub on the shaft, keeping the keyways (if existing) aligned.
- Lightly tap the face of the hub with a soft mallet. The resultant position will provide a starting point for the hub axial draw up.
- Use a depth micrometer to measure the distance from the shaft end to the hub face, as shown in Figure 3. Record the dimension. 7.4.
- 7.5. Mount a dial indicator to read axial hub advancement, as shown in Figure 4. Alternatively, the indicator can be positioned to contact the end of the hub. Set the indicator to "zero".
- Remove the hub and install the key(s) in the shaft.
- 7.7. Heat the hub in an oven until the bore is sufficiently larger than the shaft.
- 350°F (177°C) is usually sufficient for carbon steel hubs. Do not exceed 500°F (260°C).
- Higher temperatures may be required for higher interference fit levels where alloy steel hubs may be encountered. A general rule to consider is that for every 160°F increase in temperature, steel will expand 0.001 inch for every inch of shaft diameter (or 0.029 mm/100°C). When calculating temperatures, also consider additional expansion to provide clearance and allow for a loss of heat and subsequent shrinkage during the handling process.
- 7.10. With the hub expanded, install it quickly on the shaft to the "zero" set point. Continue to advance the hub up the taper to the desired axial position, as defined by Rexnord's customer. Use the indicator as a guide only. A pre-set axial stop device can be helpful.
- 7.11. Inspect the assembly to verify that the hub is properly positioned. Consult Rexnord if necessary.
- 7.12. Install any hub axial retention device (if any) in accordance with the equipment manufacturer's specifications.

Shaft alignment


ATTENTION! Soft Foot - The equipment must rest flat on its base. If one or more feet of the machine are shorter, longer, or angled in some way to prevent uniform contact (a condition commonly known as "soft foot") it must now be corrected.



ATTENTION! To improve the life of the coupling, the shafts must be aligned to minimize deflection of the flexing grids. Shaft alignment is required in the axial, parallel, and angular directions, with each of these values not to exceed the recommended installation limits shown in Tables 4 and 5. Shaft alignment can be measured using various established methods, including Laser Alignment, Reverse Dial Indicator, and Rim and Face. Refer to Rexnord bulletin 538-214 "Coupling Alignment Fundamentals" for instructions regarding shaft alignment.

Close gap coupled couplings 8.1.

> Use an inside micrometer or a spacer bar equal in thickness as shown below at 90° intervals to measure the distance between hubs to gap specified in Table 3.

Type T10

Type T20

Table 3 - Gap Dimension												
GAP +/- 10%	1020T - 1090T	1100T - 1110T	1120T - 1200T	1210T - 1260T								
Inch	0.125	0.188	0.250	0.500								
mm	3	5	6	13								

The "Angular Misalignment" value is the maximum difference between the measurements X and Y taken at opposite ends of the hub flanges, as shown in Figure 5.

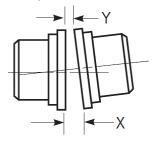


Figure 5 - Angular misalignment

Table 4 - Maximum angular misalignment value														
Angular	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
~ ~	Inch	0.003	0.003	0.003	0.004	0.005	0.005	0.006	0.007	0.008	0.009	0.01	0.012	0.013
X-Y	mm	0.08	0.08	0.08	0.10	0.13	0.13	0.15	0.18	0.20	0.23	0.25	0.30	0.33
Angular	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
V V	Inch	0.016	0.018	0.020	0.022	0.024	0.027	0.029	0.032	0.035	0.038	0.042	0.046	
X-Y	mm	0.406	0.457	0.508	0.559	0.610	0.686	0.737	0.813	0.889	0.965	1.070	1.170	

02/2012

The "Parallel Misalignment" value (P) is the offset between the centers of the hubs, as shown in Figure 6.

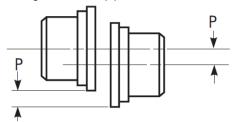
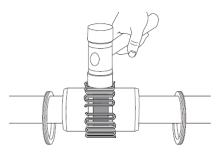
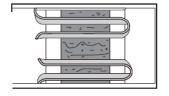
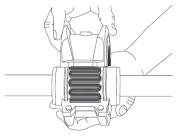



Figure 6 - Parallel misalignment

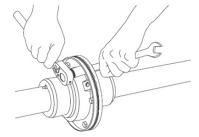

	Table 5 - Maximum difference P													
Parallel Offset	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
Р	Inch	0.006	0.006	0.006	0.008	0.008	0.008	0.008	0.008	0.010	0.010	0.011	0.011	0.011
Ρ	mm	0.150	0.150	0.150	0.200	0.200	0.200	0.200	0.200	0.250	0.250	0.280	0.280	0.280
Parallel Offset	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
Р	Inch	0.012	0.012	0.012	0.015	0.015	0.015	0.018	0.018	0.019	0.019	0.020	0.020	
P	mm	0.305	0.305	0.305	0.381	0.381	0.381	0.457	0.457	0.483	0.483	0.508	0.508	

Coupling Grid installation

For T20 insert gasket between hubs. Pack gap and grooves with specified lubricant before inserting grid. When grids are furnished in two or more segments, install them so that all cut ends face eachother (as detailed in the picture below); this will assure correct grid contact with non-rotating pins in cover halves. Spread the grid slightly to pass over the coupling teeth and seat with a soft mallet


Type T20

10. Cover assembly


10.1. Pack the spaces between and around the grid with as much lubricant as possible and wipe off excess flush with top of grid.

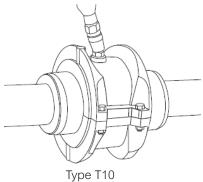
T10: Position seals on hubs to line up with grooves in cover. Position gaskets on flange of lower cover half and assemble covers so that the match marks are on the same side. If shafts are not level (horizontal) or coupling is to be used vertically, assemble cover halves with the lug and match.

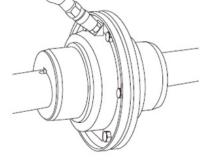
T20: Slide cover halves with seals onto hubs and position with lube holes 180° apart (90° apart for Sizes 1150 thru 1170). Line up cover and gasket bolt holes and secure with fasteners; tighten to torque specified in Table 6

Type T10

Type T20

428-111




Table 6 - Cover fastener tightening torque														
Cover Fastener Tightening	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
T10	lb-in	100	100	100	200	200	200	200	200	312	312	650	650	650
T10	Nm	11.3	11.3	11.3	22.6	22.6	22.6	22.6	22.6	35.0	35.0	73.4	73.4	73.4
T20	lb-in	100	100	100	200	200	200	200	200	260	260	260	650	650
120	Nm	11.3	11.3	11.3	22.6	22.6	22.6	22.6	22.6	29.4	29.4	29.4	73.4	73.4
Cover Fastener Tightening	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
T10	lb-in	650	650	1300	1300	1300	2300	2300	3580	3580	5350	5350	5350	
	Nm	73.4	73.4	146.9	146.9	146.9	259.9	259.9	404.5	404.5	604.5	604.5	604.5	
T20	lb-in	650	1300	1300										
T20	Nm	73.4	146.9	146.9										

10.2. Operating limits for Steelflex Couplings

10.2. Op	10.2. Operating limits for Steemex Couplings													
					Tab	le 7 - An	gular Ope	ration lin	nits					
Angular	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
X-Y	Inch	0.010	0.012	0.013	0.016	0.018	0.020	0.024	0.028	0.033	0.036	0.040	0.047	0.053
A-1	mm	0.25	0.30	0.33	0.41	0.46	0.51	0.61	0.71	0.84	0.91	1.02	1.19	1.35
Angular	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
~ ~	Inch	0.062	0.070	0.079	0.089	0.097	0.107	0.118	0.129	0.142	0.154	0.169	0.183	
X-Y	mm	1.57	1.79	2.01	2.26	2.46	2.72	3.00	3.28	3.61	3.91	4.29	4.64	
					Tab	le 8 - Pa	rallel Ope	ration lim	nits					
Parallel Offset	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
Р	Inch	0.012	0.012	0.012	0.016	0.016	0.016	0.016	0.016	0.02	0.02	0.022	0.022	0.022
P	mm	0.300	0.300	0.300	0.410	0.410	0.410	0.410	0.410	0.510	0.510	0.560	0.560	0.560
Parallel Offset	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
Р	Inch	0.024	0.024	0.024	0.030	0.030	0.030	0.036	0.036	0.038	0.038	0.040	0.040	
۲	mm	0.610	0.610	0.610	0.762	0.762	0.762	0.914	0.914	0.965	0.965	1.020	1.020	

11. Coupling lubrication

Type T20

LTG Coupling grease

The High centrifugal forces encountered in couplings separate the base oil and thickener of general purpose greases. Heavy thickener, which has no lubrication qualities, accumulates in the grid – groove area of Steelflex couplings resulting in premature hub or grid failure unless periodic lubrication cycles are maintained.

Falk Long Term Grease (LTG) was developed specifically for couplings. It resists separation of the oil and thickener. The consistency of Falk LTG changes with operating conditions. Working of the lubricant under actual service conditions causes it to become semifluid while the grease near the seals will set to a heavier grade, helping to prevent leakage. LTG is highly resistant to separation, easily out performing all other lubricants tested. The resistance to separation allows the lubricant to be used for relatively long periods of time.

Steelflex couplings initially lubricated with LTG will not require re-lubrication until the connected equipment is stopped for servicing. If a coupling leaks grease, or is exposed to extreme environments, more frequent lubrication may be required.

USDA APPROVAL

LTG has the United States Department of Agriculture Food Safety & Inspection Service approval for applications where there is no possibility of contact with edible products. (H-2 ratings)

If Falk LTG grease is not used in coupling use an NLGI EP #2 type grease specific for couplings with rust and oxidation inhibitors that do not corrode steel or swell or deteriorate synthetic seals. This applies for general applications where the coupling will operate in ambient temperatures of -18° C to 66°C (0°F to 150°F).

Consult a local lubricant representative for available products in your area with the required weight and lubricant standard requirements as listed below.

11.1. Lubricate coupling with correct amount of lubricant specified on table 9.

Table 9: Lubrication amount														
Lube Weight	Size	1020T	1030T	1040T	1050T	1060T	1070T	1080T	1090T	1100T	1110T	1120T	1130T	1140T
T10/T20	lb	0.06	0.09	0.12	0.15	0.19	0.25	0.38	0.56	0.94	1.10	1.60	2.00	2.50
	kg	0.03	0.04	0.05	0.07	0.09	0.11	0.17	0.25	0.43	0.51	0.74	0.91	1.14
Lube Weight	Size	1150T	1160T	1170T	1180T	1190T	1200T	1210T	1220T	1230T	1240T	1250T	1260T	
T40/T20	lb	4.3	6.2	7.7	8.3	9.7	12.4	23.2	35.4	53.0	74.5	110.5	148.1	
T10/T20	kg	1.95	2.81	3.49	3.76	4.40	5.62	10.5	16.1	24.0	33.8	50.1	67.2	

If coupling leaks grease, is exposed to extreme temperatures, excessive moisture or experiences frequent reversals or axial movements; more frequent lubrication may be required.

CAUTION: Remove grease fitting and make certain all plugs are inserted after lubricating.

12. ANNUAL MAINTENANCE

- 12.1. For extreme or unusual operating conditions, check coupling more frequently.
- 12.2. Check coupling alignment per steps on page 6. If the maximum operating misalignment values are exceeded, realign the coupling to the recommended installation limits. See Table 4, 5, 7 and 8 for installation and operating alignment limits.
- 12.3. Check tightening torques of all fasteners.
- 12.4. Inspect seal ring and gasket to determine if replacement is required. If leaking grease, replace.
- 12.5. When connected equipment is serviced, disassemble the coupling and inspect for wear. Replace worn parts. Clean grease from coupling and repack with new grease. Install coupling using new gasket as instructed in this manual.

Periodic Lubrication

The required frequency of lubrication is directly related to the type of lubricant chosen, and the operating conditions. Steelflex couplings lubricated with common industrial lubricants, such as those shown in Table 9, should be relubed annually. The use of Falk Long Term Grease (LTG) will allow relube intervals to be extended to beyond five years. When relubing, remove both lube plugs and insert lube fitting. Fill with recommended lubricant until an excess appears at the opposite hole.